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Abstract. The structure of the state-vector space for the two-mode parabose systemis investigated
and a complete set of state vectors is constructed. The basis vectors are orthonormal in order
p = 2. Inorderp = 2, conserved-charge parabose coherent states are constructed and an explicit
completeness relation is obtained.

1. Introduction

A fundamental unresolved question in physics is whether all particles of nature are necessarily
either bosons or fermions. Theoretical investigations of other possibilities in local, relativistic
quantum field theory show that there may exist more general particle statistics [1,2]. There
may exist three types of statistics for identical particles: the parabose and parafermi statistics
for which the number of particles in an antisymmetric or a symmetric state, respectively, cannot
exceed a given integer, called the order of the parastatistics; and for two space dimensions,
infinite statistics based on the braid group. Practical motivation for the study of generalized
statistics includes their application to the theory of the fractional quantum Hall effect [2]. In
the case of parastatistics, there is the additional motivation of the possible produgticn bf
paraparticles at the higher energies of new and future colliders (the Tevatron, the LHC, the
NLCs, etc). At present, in spite of these practical motivations, there is very little known about
specific signatures for multi-mode parabosons nor is there complete information about the
structure of the state-vector space [1].

Knowledge of the structure of the state-vector space for a quantum theory is essential.
For example, many successful applications of the ordinary boson and fermion descriptions in
various fields of physics are based on the full knowledge about the structure of the ordinary bose
and fermi state-vector spaces. During the period of early interest in parastatistics, the explicit
structure of the state-vector space for a single-mode of parabosons, and of parafermions, was
determined. The associated coherent states for a single parabose mode were also constructed
[3]. Because there are no simple commutative or anticommutative bilinear relations between
single parapatrticles belonging to different degrees of freedom, knowledge about the structure
of the state-vector space for the case of more than one mode of paraparticles remains very
limited. One knows that the space is spanned by a state vector of the\ft(nfl, alT, ..)|0),
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where M denotes an arbitrary monomial in the parabose creation oper;dtcnﬁ, ...,and
|0) is the unique vacuum state. While thiparaparticle state vector can be written [4] as a
so-called ‘state vector of the standard form’, one still does not know the explicit form of a
complete set of basis vectors for such systems. Consequently, parabose coherent states for
more than the one-mode case have not been constructed.

In this paper, we investigate the simplest non-trivial case—the structure of the state space
for the two-mode parabose system. While the fundamental parabose commutation relations
are trilinear,

[aks {alT» am }] = 20 an, [ak, {CllT, Cl;, }] = 251{161; + 28kma;r
lax, {ar, an}] =0 k,l,m=1,2)

it does nevertheless follow that there are some simple commutation relations between ‘A
paraboson operators and the ‘B’ paraboson operators: lettiag;, b = ao,

[a,b?] =0 [b,a’l =0 [a", 5] =0 [bT, 4% =0 2)

plus the Hermitian conjugate relations.

In section 2 we use these relations to construct an explicit complete set of state vectors for
the two-mode parabose system. Thengoe 2 order parabosons, in section 3 we show that
these state vectors are also orthogonal and thereby obtain a complete, orthonormal set of basis
vectors. In section 4, we use these basis vectors to construct the conserved-charge parabose
coherent states and show that they satisfy an explicit completeness relation.

)

2. The complete set of state vectors

We assume there is a unique vacuum si@tesatisfying
al0)=0  aa/|0) = psul0) 3)

and consider a state with a total numBéiof parabosons. Without loss of generality, in this
state there are parabosong andm paraboson®, with 0 < n,m < N andn +m = N. We
denote each patrtition bz, m). For a givenV, the number of its partitions iy + 1.

Theorem. The dimension of the subspage m) is min(n, m) + 1.

To prove this, without loss of generality we assume that m. Counting the number of
states in the subspace, m) is equal to counting the number of ways of arrangirgarticles
A andm particlesB in n + m = N boxes. WhileA and B cannot be freely interchanged,
by (2) two adjacentd particles can be freely interchanged with a singlearticle, and vice
versa. Form even, we first assign the particlesB in the lastm boxes, with the other
boxes occupied by the particlesA. We call this state 1, and denote4dtA... ABB ... B.
Without separating thé particles, no new state arises. So we next separatéBquenticle
and put it in the last box, with ong in the next box, and then put the remainiBgarticles
in the nextm — 1 boxes. This is a new state (state 2) denotediby. AB ... BAB. Again,
repositioning the group of: — 1 B particles does not produce a state different from states
1 or 2. Next we putABA in the last three boxes, and the— 1 group of B particles in
the nextm — 1 boxes, followed by thes — 2 A particles. This is a new state (state 3)
denoted byA...AB...B... BABA. Again, repositioning the group @t — 1 B particles
does not produce a new state. The next step is to separateRhpeeticles on the right,
and insertA particles to keep these thréeparticles separate, while the remaining— 3 B
particles are kept grouped together. Proceeding as before, this again gives two new states:
A...AB...BABABABandA...AB... BABABABABA. Continuing this process, each
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time we separate two additionBlparticles and obtain two different states with different right
endings. This procedure ends when it produces two states with @lgheticles non-adjacent.
Thereby, form even, we obtain 2] + 1 = m + 1 different statest. Similarly for odd, we
construct 2{%1] = m + 1 different states.

This theorem reflects a major difference between the paraboson system and the ordinary
boson system. In the ordinary boson case, there is only one state in the sutaspage.e.
(a™)"(b")™|0), versusn + 1 different states (it > m) in the paraboson system. It also follows
from this theorem, that the dimension of the state-vector space with a tadalpafraboson
particlesA and B is ([%] + 1)([”7*1] + 2), instead of the dimensioN + 1 for the ordinary
two-mode boson case.

In summary, for alk andm values, we can write the state vectomgparabosongl and
m paraboson® as

1 . i— i— . i—
In,m3 i) = ——=—=(@y"= e AT @PHA TG (@)
Nril,m
whereN] , is the normalization constant, and
S=311-(=)" 1<i <min(, m)+ 1.

It is useful to note that the appearance of a new indéxa characteristic feature of
para-systems with more than one mode. This occurs because of the intrinsic degeneracy of the
many-mode parasystem; i.e. the quantum numbarsln do not suffice to completely specify
the quantum states sina® # ba. Since the proof is constructive, there is no possibility to
build any other states, and so the set of state vectors

{ln,m;i)jn,m=0,1,...;1<i<<min(n,m)+1}

is complete.

These state vectors are orthogonal between différemt) subspaces, but in general the
Gram-Schmidt orthogonalization method or some other procedure must be used for different
i andi’ states in such a subspace. However, this latter step is not necessary fqr erdeas
we next show.

3. The orderp = 2 case

Inspection of the structure of the state vector given in (4) shows that there are two distinct
orderings of the parabosorsand B in the (n, m) subspace:

(i) type I: (M=% (bTY"=2/ (ap")?/|0), and
(ii) type II: (a")y"=% =2 =2"1(ba")2/*1|0), wherej = [53]. Type I(Il) respectively
corresponds to — S being even (odd), whergis defined after (4).

Neglecting the normalization factorg/ ,, and N

.m» When both state vectors are type |
we have

(n,m; i'ln, m; i) = (O|(ba)? b" 2 a"~% (@'~ # (b")" "% (a'b")?|0)  (5)
wherej’ = ["%9]. With no loss in generality we assunje- j’. Using the algebraic relations
a(aT)Zn — Zn(aT)Zn—l + (aT)Zna b(bT)Zn — Zn(bT)Zn—l + (bT)an (6)

Tt Forx > 0, square brackets] denote the integer part af
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and (only true forp = 2)

ba'bt = btath abta’ =a'bla bbtat = abTh+ 247 aa'b’ =bTaTa +2p1
(7
we gett
(m — 2)! (m + 2j)1!
@
x(0l(ba)? a" 2" (a"y"2/ ()21 (a'b")?|0) = O
. . (m even)
s Eln,mi i) = 4Gy 1 27) 1 m + 1+ 21 ®)
@
x (0] (ba)? ba" % (a")" =% ()2~ (a"p")?|0) = 0
(m odd)

In (8) we used the fact thaeb'(a™p")"|0) = 2(n + 1)(a"p")"|0) and b(a'p")"|0) =
bTa™"b|0) = 0.
Next we consider the case of both the state vectors being type Il
(n, m; i/In, mii) = (O|(ab)2-//‘le’”_Z-fLla"_zj'_l(aT)"_zj_l(bT)m_zj_l(bTaT)2j+l|O). (9)
If m is odd, this overlap (9) can be written as
<0|(ab)Zj’+lbm72j’71(bT)m72j71an72j’7l(aT)1172j71(bTaT)2j+l|0)
(n—2=2)(n+2+2))
4j + 2N
x <O|(ab)Zj’+lbm72j’fl(bT)m72j71a2(j7j’) (bTaT)2j+l|0) =0
_ (n even)
=Y (—1-2)(n+1+2) (10)
(4j + 211
« <O|(ab)Zj’+1bm—2j’—1(b‘r)m72j*1a2(j*j’)(bTaT)2j+1|o) =0
(n odd).
If m is even, the overlap (9) can be written as
(Ol(ab)? o212 (pTy" 2l a2 2 a2 (ba")?/|0)
(n—2j)11(n +2j)!
@))!
% <O|(ab)2j’+lbm—2j/—l(b1')m—2jaZ(j—j’)—l(bTaT)Zj |O) =0
_ (n even)
=) (r—1-2))(n+1+2)N (11)
@
% <O|(ab)Zj'+lbm—2j'—1(bT)m—2jaZ(j—j’)—l(bTaT)Zj |O> =0
(n odd).

Finally, we consider the overlap of one state vector belonging to type | and another state vector
belonging to type II:

(n,m3 '\, ms i) = (0l(ab)¥ "4 1"~ ¥ 1"y H 0Ty "2 "0V |0)

T Note(2)!! = 2k(2k —2)(2k — 4)...2,(2k+ D! = 2k +1)(2k — 1)(2k — 3) ... 1.
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— 2j)(m +2))! S i A
(m ]) (m ]) (O|(ab)2/ an—2] (aT)n—Zl/b2(‘/—] )(aTbT)2_1|O> -0
CHL
(m even)
— J m—=1=-2)l(m+1+2)! (12)
cl
X<0|(ab)Zj’+lan72j'7l(aT)n72jb2(j7j')fl(aTbT)2j|0> -0
(m odd),
Thus,
(n,m;i'ln,m:;i) =0 for i#i (13)

which completes the proof of orthogonality fpr= 2 for the state vectors given by (4).
The normalization constan¥; ,, for the state vectofn, m; i) easily follows from the
algebraic relations (7),

(NP )2 = 2 [n;'i]! |:n+;—i:|! [m;-i]! |:m +;l—i:|!' (14)

When the annihilation operato#sandb act on this set of basis vectors, one finds

(n+i . . .
2 > i||n—l,m;l) if (n+i)even
aln,m;i) = - (15)
el
2 n—21i||n—1,m;i) if (n+i)odd
and
[m+1—i
2 %]m,m—l;ﬁl) if (n+i)even
bln, m; i) = - (16)
(m+i .
2 5 i||n,m—1;i—1) if (n+i)odd.

When we us€16) for i = 1, we identify|n, m — 1;i = 0) with |n, m — 1;i = 1) since the
construction of (4) does not include= 0. For instance, since, 2; 1) = %(a*)z(b")2|0) and
2,1 1) = ﬁé(aT)szO), we haveb|2, 2; 1) = (a"?b'|0) = v2]2, 1; 1).

Similarly, when the creation operators act on the basis vectors,

[(n+2—i
2 u]|n+1,m;i> if (n+i)even
aT|n,m; i)= - (17)
[n+1+i ) . :
2 5 ]|n+1,m;l) if (n+i)odd
and
(m+2+i . ) )
2 — m,m+21i+1) if (n+i)even
bT|n,m; i)= - (18)
(m+3—i . . .
2 Ti||n,m+1;t—1) if (n+i)odd.

In (18), fori = 1 we identify|n, m + 1;i = 0) with |[n, m +1,i = 1).
The parabose number operatdisand N, for p = 2 order are respectively defined by

N,=3a"a} -1 Ny =3{b". b} - 1. (19)
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From (15)—(18)

Nyln,m;i) = nln,m; i) Npln, m; i) = m|n, m; i) (20)
so the state vectoiig, m; i) are common eigenvectors of,, N,, and, thus, are two-mode
parabose number states.

4. Conserved-charge parabose coherent states for ordgr= 2

As an application of the complete set of orthonormal state vectors for the two-mode parabose
systemforp = 2 order, we construct the associated conserved-charge parabose coherent states.
In physics applications of coherent state techniques it is normally necessary to make various
approximations, but it often remains important to maintain the conservation of an Abelian
charge.

Using the above number operatoks, and N, we define a Hermitian charge operator by

O=N,— Ny (21)
so each of thel quanta possesses a charge ‘+1’ and each aBttpeanta a charge-1'. Since
0 does not commute with or b, we cannot require that the coherent state be simultaneously
an eigenstate of and the annihilation operatossand/orb. Since
[Q,ab] =0 [0,ba] =0 [ab, ba]l =0 (22)
we define the conserved-charge parabose coherentgtate’) by the requirements that
0lq,z,7)=qlq,z,7) ablg,z,7') = zlq,2, 7)) balq,z,7') =7q,2,7). (23)
Here for parabosons sine® # ba, we introduce two complex numbersandz’, unlike for
ordinary bosonsyg{ = 1) where only one was needed [5].
To obtain an explicit expression for these coherent states, we consider the expansion

oo min(n,m)+1

lg.2.2y =Y > chulnmsi) (24)

n,m=0 i=1
with thec;, ,, expansion coefficents to be determined. Sigce, ') is an eigenstate ap, for
qg=0

oo m+l

lq,2,7) =ch;+m,mlq +m,m;i). (25)

m=0i=1

Substituting this expression into the remaining two eigen-equations in (23) and using (15),

(16), we obtain
[ ]I[ q+1]|( )[m (= >'1 i 1 e ) ]( )[m+( yarmt 1+<;)'f]
1 \/— . (26)

C;+m,m (z, Z/) €.0 m+i +m+i m+1 tmt1—i
1
2m\/[_2 [ Lo i

Thus, the charged parabose coherent statg 810 is

0o m+l [m (- )q+m+1’+1 ( \a ]( [m+( yarmi; LI )q]
() )

lg,2,2) = Nz, ) YY) lg +m, m; i) (27)
m=0 i=1 2m\/[m+z]|[q+m+t]|[m+l—z]|[ q+m+l l]l
with the normalization constant
oo m+l QM.;J() 2[w+ﬂ]
_ |22 l|2/] 2 a
N2 = :
N0 =2.2, 22n [ e

11

141 (4]
- (, ';') JigyGilz |>< '“) S G (28)
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whereJ, is a Bessel function of order.
Wheng < 0, the construction proceeds similarly: the charged parabose coherent state is

oo m+l

|q,Z,Z chm \q\+m|m lg| +m; i) (29)

m=0 i=
[ (=5 @)
4 +i |q|+m+i +1—i |g|+m+1—i ' (30)
2 [ g et ety
The charged parabose coherent state;f@ro is

m+1 "‘()
@! 1! .
lg,2.2") = Ny(z. 2) Im, |q| +m; i) 31
q.2,7) 2,2 ,;)lezm\/[’””]'[ ,quﬂ]l[mﬂ i |q|+m+l ) m, gl +m;i (31)

with the normalization constant fgr < 0

where

] / 1
Ci,,,\qu(Z, ) =c¢p

m+( )”’*’ l+1]

oo m+l |2[mflf)’”+"r]| /|2[m+(*)m+"i+1]
N)2=3 3 o —
2, P

[\q ] 7[\/\]
_ Q%) (l'z—2|> NGE) (32)

The inner product of two non-negatively charged parabose coherent stateg’is> 0)
(w*2) gy (w2 (G w)*2) 2 sy (1 ())*2)
Ny(z, 2 )Ny (w, w’)

(1+

(33)

(q.z.71q", w,w') =68, 4

and for(q, ¢’ < 0)

\q\‘rl

(G2 5 s (0*2) (5 (') ) 18D gy (1 (w')2))
(9,2, 7lq' s w, w') =84 Ny(z, Z)Ny(w, w') .

If ¢ > 0andg’ < 0, the inner product vanishes. Therefore, the charged parabose coherent
states with different charges are orthogonal, but for the sgis®ector, the charged parabose
coherent states are not orthogonal. Consequently, for the ge@etor the charged parabose
coherent states are linearly dependent and overcomplete.

These charged parabose coherent states satisfy the completeness relation

d2 d2 /
Z/ 0, gz gz = 1 (35)
q=—00
where dz = r dr d9, d?z’ = ' dr’ d0’, and
.2 = L)) gy (12D K ]<|z|>J[q+1](i|z’|)1<[q+1](|z’|> for ¢>0
o L (=) s (i) K s 411 DKy (D for g <0
(36)

with K, (x) = i exp(”‘T”)(J,, (ix) +iN,(ix)) a modified Bessel function. This result follows
since by the integration formula [6]

o0 J—
/ dr r*K,(ar) = on=lg=—n-1r (M +]2) * l) r <M 2‘) M 1)
0

(Re(u £v) > 0,Re(a) > 0) (37)
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we find
d2 d2 / oo oo m+l
Z/ ——— P4z g, 2, ) qzzl—ZZZ|q+mml<q+mml
g=—00 g=0m=0 i=
o] oo m+l
+> ZZ'm gl +m; i) (m, |q| +m; il
g=1m=0 i=
00 n(n,m)+1
m

min(n,m
In,m;i)(n,m;i| =1I. (38)
PSS

n,m=0 i=1
For non-negative integer, using (28) we can rewrite (36) as= re?, z/ = r'd?)
@, (2. 7)) = %(r/Z)[Q/Z] (r//2)[(q+l)/2]Nq_2K[%] (}’)K[%] ') (39)

where N, is the normalization factor of the charged parabose coherent state (27) for
non-negative integey and is a non-negative quantity as shown in (28){2)[4/? and
(r'/2)l@*D/2] gre also non-negative. Finally, from the integral representationk[gly) =

f0°° dre "o coshnr, we see that the functiok, () is non-negativer(is a non-negative real
parameter). This verifies that the weight functibp(z, z) is strictly non-negative for ali, z’

and non-negative integer. For negative integef, one can similarly verify that the weight
function non-negative. This concludes the proof.

In summary, in this paper we construct a complete set of basis vectors for the two-mode
paraboson system. In order = 2, the basis vectors are orthonormal and we construct
the associated conserved-charge parabose coherent states. The latter are orthogonal between
differentg-sectors and are overcomplete within egekector. It is important to generalize
these constructions to more than the two-mode system apd-t@.
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